# Effective dose and risks from medical X-ray procedures

ICRP Symposium on the International System of Radiological Protection

October 24-26, 2011 – Bethesda, MD, USA

M. Balonov, ICRP Committee 2, IRH, Russia P. Shrimpton, HPA, UK



## Limitations of effective dose as risk-related quantity

- To be used just for regulatory purposes.
- An effective dose value assigned to an individual is the effective dose of a reference person under considered exposure situation. It is not individual dose with regard of age, sex, anatomical and physiological properties, behaviour, etc.
- Difficulties in using *E* for comparison of different sources of exposure or population groups with various age-sex characteristics, e.g. in medical exposure.

## Medical exposure (ICRP-103, -105)

- Effective dose is used to compare diagnostic procedures, hospitals, etc. It is appropriate when patients are similar with regard to age and sex.
- However, age and sex distributions of patients can be quite different from those of general population. Therefore, *E* should not be used to compare doses from medical exposure to doses from other sources.
- <u>ICRP-103</u>: "<u>Risk assessment for medical uses of</u> <u>ionizing radiation is best evaluated using appropriate</u> <u>risk values for the individual tissues at risk, and for the</u> <u>age and sex distribution of the individuals undergoing</u> <u>the medical procedures.</u> "

## However, for practical purposes:

- Can simple adjustments be made to the nominal risk per unit *E* as a function of age and sex?
- We did that analysis in indpendent way at IRH, St. Petersburg, Russia, and HPA, Chilton, UK:
  - 'Age and Sex Dependence of the Stochastic Health Effects Due to Radiography' M. Balonov, V. Golikov, S. Kalnitsky and A. Bratilova. Med Radiology and Rad Safety, v. 56, No 4 (2011), in Russian.
  - 'Radiation risks from medical x-ray examinations as a function of the age and sex of the patient' BF Wall, R Haylock, JTM Jansen, MC Hillier, D Hart and PC Shrimpton. HPA-CRCE-028 (2011).



## Methodology

Methodologically similar but not identical dose and risk calculations were performed at two institutions:

- Organ and effective doses calculated for a range of x-ray examinations IRH and HPA
- ICRP 103/UNSCEAR 2006 risk models used to calculate age/sex-specific lifetime detriment-adjusted risks IRH
- ICRP 103 risk models used to calculate age/sex-specific lifetime risks of cancer incidence and genetic effects for Western population HPA
- Risks from individual procedures calculated and compared using:
  - > organ doses and age/sex-specific risk coefficients
  - > effective doses and nominal risk coefficients

## Typical X-Ray age-depended patient doses in St. Petersburg



#### Typical UK Patient Doses From Common X-Ray Examinations - Range

| Examination          | Effective dose (mSv) |        | Highest organ dose |       |  |  |
|----------------------|----------------------|--------|--------------------|-------|--|--|
|                      | Е-бо                 | E-103  | Organ              | mGy   |  |  |
| Radiography          |                      |        |                    |       |  |  |
| Foot                 | 0.0002               | 0.0002 | Skin               | 0.007 |  |  |
| Head (skull)         | 0.05                 | 0.068  | Salivary glands    | 1.3   |  |  |
| IVU                  | 2.3                  | 2.1    | Stomach            | 6.9   |  |  |
| Fluoroscopy          |                      |        |                    |       |  |  |
| Ba follow            | 1.5                  | 1.3    | Kidneys            | 6.1   |  |  |
| Coronary angiography | 3.9                  | 3.9    | Lungs              | 15    |  |  |
| СТ                   |                      |        |                    |       |  |  |
| Head                 | 1.6                  | 1.4    | Brain              | 45    |  |  |
| Chest+Abdo+Pelvis    | 9.2                  | 10     | Thymus             | 15    |  |  |



Detriment-adjusted risk coefficients r(A, T), 10<sup>-4</sup> Sv<sup>-1</sup>,

#### for women (ICRP-103/UNSCEAR-2006)

| Organ/Tissue  | Age group, years (A) |        |       |       |       |       |                |      |       |
|---------------|----------------------|--------|-------|-------|-------|-------|----------------|------|-------|
| (1)           | 0-9                  | 10-19  | 20-29 | 30-39 | 40-49 | 50-59 | 60 <b>-</b> 69 | >70  | 0-85  |
| Oesophagus    | 34,1                 | 23,4   | 18,1  | 13,5  | 9,2   | 5,6   | 2,9            | 1,0  | 13,6  |
| Stomach       | 194,5                | 133,3  | 103,1 | 76,7  | 52,7  | 31,8  | 16,3           | 5,4  | 77,5  |
| Colon         | 72,8                 | 49,9   | 38,6  | 28,7  | 19,7  | 11,9  | 6,1            | 2,0  | 29,0  |
| Liver         | 42,7                 | 29,2   | 22,6  | 16,8  | 11,6  | 7,0   | 3,6            | 1,2  | 17,0  |
| Lungs         | 303,0                | 207,6  | 160,5 | 119,5 | 82,1  | 49,5  | 25,3           | 8,4  | 120,7 |
| Bone surface  | 12,8                 | 8,8    | 6,8   | 5,0   | 3,5   | 2,1   | 1,1            | 0,4  | 5,1   |
| Skin          | 10,0                 | 6,9    | 5,3   | 4,0   | 2,7   | 1,6   | 0,8            | 0,3  | 4,0   |
| Breast        | 400,8                | 274,7  | 212,4 | 158,1 | 108,6 | 65,5  | 33,5           | 11,2 | 159,7 |
| Ovary         | 49,7                 | 34,1   | 26,3  | 19,6  | 13,5  | 8,1   | 4,2            | 1,4  | 19,8  |
| Bladder       | 39,7                 | 27,2   | 21,0  | 15,6  | 10,7  | 6,5   | 3,3            | 1,1  | 15,8  |
| Thyroid       | 51,7                 | 35,4   | 27,4  | 20,4  | 14,0  | 8,4   | 4,3            | 1,4  | 20,6  |
| RBM           | 133,5                | 91,5   | 70,8  | 52,7  | 36,2  | 21,8  | 11,2           | 3,7  | 53,2  |
| Remainder     | 258,8                | 177,3  | 137,1 | 102,1 | 70,1  | 42,3  | 21,7           | 7,2  | 103,1 |
| Gonads (her.) | 53                   | 50     | 50    | 50    | 0,0   | 0,0   | 0,0            | 0,0  | 25,4  |
| Total         | 1657,1               | 1149,3 | 900,0 | 682,7 | 434,6 | 262,0 | 134,2          | 44,7 | 664,6 |

#### Lifetime Risk of Cancer Incidence (% / Gy to Organ) by Age & Sex – ICRP-103









PROTECTION

#### Total Lifetime Risk of Cancer Incidence Per X-Ray Exam by Age & Sex - HPA

#### Typical risk per million (10<sup>-6</sup>)

| Examination          | Sex | Age at exposure (y) |       |       |       |       |
|----------------------|-----|---------------------|-------|-------|-------|-------|
|                      |     | 0-9                 | 20-29 | 40-49 | 60-69 | 80-89 |
| Chest                | М   | 1.3                 | 0.9   | 0.7   | 0.5   | 0.1   |
| Chest                | F   | 1.9                 | 1.4   | 1.2   | o.8   | 0.2   |
| Head                 | М   | 12                  | 5.9   | 3.2   | 1.3   | 0.3   |
| Head                 | F   | 11                  | 5.3   | 2.9   | 1.0   | 0.2   |
| Ba follow            | М   | 170                 | 100   | 66    | 30    | 6.4   |
| Ba follow            | F   | 140                 | 91    | 61    | 28    | 5.4   |
| Coronary angiography | М   | 330                 | 250   | 210   | 150   | 41    |
| Coronary angiography | F   | 430                 | 370   | 370   | 270   | 66    |
| CT ches+abdo+pelvis  | М   | 960                 | 630   | 440   | 240   | 58    |
| CT chest+abdo+pelvis | F   | 1500                | 910   | 640   | 360   | 80    |

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

#### Lifetime Risk of Various Age Groups of Female Patients due to Radiography - IRH



Ratio of risks from radiography calculated for various sex-age groups to risks based on effective dose - IRH

| Radio-    | F/M     | Risk ratio: Organ dose/Effective dose |         |         |
|-----------|---------|---------------------------------------|---------|---------|
| graphy    |         | Children                              | Girls   | Adult F |
|           |         | (0-9 y)                               | (0-9 y) | (20 +)  |
| Skull     | 1.2-1.3 | 1.4                                   | 1.6     | 0.5     |
| Thorax    | 1.9-3.2 | 2.6                                   | 4.0     | 1.0     |
| Abdominal | 1119    | 1 7                                   | 1.0     | 0.6     |
| cavity    | 1.1-1.4 | 1./                                   | 1.9     | 0.0     |
| Lumbar    | 11      | 2.0                                   | 2.0     | 07      |
| spine     | 1.1     | 2.0                                   | 2.0     | 0.7     |
| Pelvis    | 0.8-0.9 | 1.7                                   | 1.5     | 0.5     |
| Mammo-    |         |                                       |         | 2.0     |
| graphy    |         |                                       |         | 2.0     |



Ratio of risks (range) from X-ray examinations calculated for various sex-age groups to risks based on *E* - HPA

| Exami-<br>nation     | Age band, years |         |         |  |  |  |
|----------------------|-----------------|---------|---------|--|--|--|
|                      | 0-9             | 30-39   | 60-69   |  |  |  |
| Radio-<br>graphy (8) | 1.4-3.6         | 0.5-2.2 | 0.2-1.4 |  |  |  |
| Fluoro-<br>scopy (5) | 1.5-3.5         | 0.9-2.3 | 0.4-1.7 |  |  |  |
| CT (5)               | 1.5-3.3         | 1.1-2.1 | 0.5-1.1 |  |  |  |



#### Broad Risk Bands for Typical Lifetime Cancer Incidence from X-Ray Examinations

| Examination                                                               | Sex                      | Typical total lifetime cancer risk<br>(30- 39 y age band) |
|---------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------|
| Cervical spine, Chest<br>Knee, Foot                                       | M, M<br>B, B             | NEGLIGIBLE RISK<br>Less than 1 in a million               |
| Head<br>Cervical spine, Chest                                             | B<br>F, F                | MINIMAL RISK<br>1 in a million to 1 in 100,000            |
| Thoracic spine<br>Abdomen, Pelvis<br>Lumbar spine<br>Ba follow<br>CT head | B<br>B, B<br>B<br>B<br>F | VERY LOW RISK<br>1 in 100,000 to 1 in 10,000              |
| IVU<br>Ba enema<br>Angiography<br>CT head<br>CT trunk                     | B<br>B<br>B<br>M<br>B    | LOW RISK<br>1 in 10,000 to 1 in 1,000                     |

## Discussion

- The significant sex- and age-dependence of radiogenic risk for different cancer types is an important consideration for radiologists when planning X-ray examinations.
- As expected, for some procedures and doses the simplified approach for risk assessment based on *E* underestimated risk in children (0-9 y) by a factor of 1.5 to 4 and overestimated risk for elder patients (60+) by about an order of magnitude.
- Is an risk underestimation factor of two to four for children and young women worth of development of more complicated assessment procedure?
- As for risk overestimation for senior patients by an order of magnitude, that might be considered as cautious approach to protection against medical exposure.

### Summary

While effective dose was not intended to provide a measure of risk associated with medical radiological examinations, it may be appropriate to use it following simple adjustments to the nominal risk per unit effective dose to account for age (and sex?) differences.



#### www.icrp.org

